首页 | 本学科首页   官方微博 | 高级检索  
     


A chromosomal analysis of some water beetle species recently transferred from Agabus Leach to Ilybius Erichson, with particular reference to the variation in chromosome number shown by I. montanus Stephens (Coleoptera: Dytiscidae)
Authors:Aradottir G I  Angus R B
Affiliation:School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK, TW20 0EX.
Abstract:
The karyotypes of seven Ilybius species are described and illustrated. All except I. wasastjernae have a basic karyotype of 34 autosomes plus sex chromosomes which are X0 ( male symbol ), XX ( female symbol ), with the X chromosome among the largest in the nucleus. This karyotype appears to be the norm for Ilybius and supports the transfer of the species concerned from Agabus to Ilybius. I. wasastjernae has 36 autosomes and the X chromosome is the smallest in the nucleus and its karyotype is unlike any other known karyotype in either Ilybius or Agabus. In most of the species studied no intraspecific variation has been detected. Exceptions are I. chalconatus, where there is one inversion polymorphism in one of the autosomes, and I. montanus whose autosome number has been found to vary from 29 to 34. Such variation is highly unusual among Coleoptera. The variation results from fusion-fission polymorphisms involving three different pairs of autosomes. In each case the fusions may be homozygous, heterozygous or absent. All populations investigated were polymorphic for some of the fusions, but only one (La Salceda, Spain) included individuals lacking all fusions. The frequencies of fused and unfused chromosomes were analysed in three English populations. In only one case was there a departure from the values expected from the Hardy-Weinberg equilibrium, and this population also showed a significant difference from the other two. Meiosis in males heterozygous for fusions involves the production of trivalents in first division, but results in the production of abundant sperm, with no evidence of chromosomal abnormalities in second metaphase, or of degenerating cells as a result of failed meiosis. The three fusions sites are consistent in all the populations studied, and it is concluded that these fusions represent unique historical events rather than current chromosomal instability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号