首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Matrix-mediated gene transfer to brain cortex and dorsal root ganglion neurones by retrograde axonal transport after dorsal column lesion
Authors:Gonzalez Ana Maria  Berry Martin  Greenlees Lydia  Logan Ann  Baird Andrew
Institution:Molecular Neuroscience Group, Division of Medical Sciences, University of Birmingham, Birmingham B15 2TT, UK. a.m.gonzalez.1@bham.ac.uk
Abstract:BACKGROUND: In previous studies, we showed that the immobilisation of DNAs encoding basic fibroblast growth factor, neurotrophin-3 and brain-derived neurotrophic factor in a gene-activated matrix (GAM) promotes sustained survival of axotomised retinal ganglion cells after optic nerve injury. Here, we evaluated if the immobilisation of DNAs in a GAM could be an effective approach to deliver genes to axotomised dorsal root ganglion (DRG) neurones after spinal cord injury and if the matrix component of the GAM would modulate the deposition of a dense scar at the injury site. METHODS: We evaluated the expression of the thymidine kinase (TK) reporter gene in brain cortex and DRG after a bilateral T8 dorsal column (DC) lesion using PCR, RT-PCR and in situ hybridisation analyses. Collagen-based GAMs were implanted at the lesion site and the cellular response to the GAM was assessed using cell-specific markers. RESULTS: At 1 week post-injury, PCR analyses confirmed that DNATK was retrogradely transported from the DC lesion where the GAM was implanted to the brain cortex and to caudal DRG neurones, and RT-PCR analyses showed expression of mRNATK. At 7 weeks post-injury, DNATK was still be detected in the GAM and DRG. In situ hybridisation localised DNATK and mRNATK within fibroblasts, glia, endothelial and inflammatory cells invading the GAM and in DRG neurones. Interestingly, the presence of a GAM also reduced secondary cavitation and scar deposition at the lesion site. CONCLUSIONS: These results establish that GAMs act as bridging scaffolds in DC lesions limiting cavitation and scarring and delivering genes both locally to injury-reactive cells and distally to the cerebral cortex and to DRG neuronal somata through retrograde axonal transport.
Keywords:CNS  dorsal root ganglion neurones  gene therapy  matrix  spinal cord injury  retrograde axonal transport
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号