首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian semiparametric intensity estimation for inhomogeneous spatial point processes
Authors:Yue Yu Ryan  Loh Ji Meng
Affiliation:Baruch College, City University of New York, New York, New York 10010, USA. yu.yue@baruch.cuny.edu
Abstract:
In this work we propose a fully Bayesian semiparametric method to estimate the intensity of an inhomogeneous spatial point process. The basic idea is to first convert intensity estimation into a Poisson regression setting via binning data points on a regular grid, and then model the log intensity semiparametrically using an adaptive version of Gaussian Markov random fields to smooth the corresponding counts. The inference is carried by an efficient Markov chain Monte Carlo simulation algorithm. Compared to existing methods for intensity estimation, for example, parametric modeling and kernel smoothing, the proposed estimator not only provides inference regarding the dependence of the intensity function on possible covariates, but also uses information from the data to adaptively determine the amount of smoothing at the local level. The effectiveness of using our method is demonstrated through simulation studies and an application to a rainforest dataset.
Keywords:Adaptive spatial smoothing  Gaussian Markov random fields  Gibbs sampling  Intensity estimation  Spatial point process
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号