首页 | 本学科首页   官方微博 | 高级检索  
     


Modulation of Endogenous Antioxidant Enzymes by Nitric Oxide in Rat C6 Glial Cells
Authors:Kazushige Dobashi  Kalipada Pahan  Amarjit Chahal   Inderjit Singh
Affiliation:Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, U.S.A.
Abstract:Abstract: To understand the possible mechanism of nitric oxide (NO)-mediated cytotoxicity, we investigated the effect of NO on the endogenous antioxidant enzymes (AOEs) catalase, glutathione peroxidase (GPX), and CuZn- and Mn-superoxide dismutases (SODs) in rat C6 glial cells under conditions in which these cells expressed oligodendrocyte-like properties as evidenced by the expression of 2′,3′-cyclic-nucleotide 3′-phosphohydrolase. The 24-h treatment with S-nitroso-N-acetylpenicillamine (SNAP), a NO donor, decreased the activities and the protein levels of catalase, GPX, and Mn-SOD in a dose-dependent manner. Alternatively, the activity and the protein level of CuZn-SOD were increased. 2-Phenyl-4,4, 5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a NO scavenger, blocked the effect of SNAP. Moreover, the treatment of C6 cells with sodium nitroprusside, another NO donor, or with a combination of lipopolysaccharide (LPS) and interferon-γ (IFN-γ), which induce excessive production of NO, also significantly modulated the AOE activities in a manner similar to that seen with SNAP treatment. The compounds/enzymes that inhibit the production of NO (e.g., N-nitro-l -arginine methyl ester hydrochloride, arginase, and PTIO) blocked the effects of LPS and IFN-γ on the activities of AOEs. Treatment with SNAP and a combination of LPS and IFN-γ also modulated the mRNA levels of AOEs, parallel to the changes in their protein levels and activities, except for Mn-SOD where the combination of LPS and IFN-γ markedly stimulated the mRNA expression. In spite of the stimulation of mRNA level, LPS and IFN-γ significantly inhibited the activity of Mn-SOD within the first 24 h of incubation; however, Mn-SOD activity gradually increased with the increase in time of incubation. These results suggest that alterations in the status of AOEs by NO may be the basis of NO-induced cytotoxicity in disease states associated with excessive NO production.
Keywords:Nitric oxide    Cytokine    Glia    Antioxidant enzymes    Gene expression
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号