首页 | 本学科首页   官方微博 | 高级检索  
     


Functional analysis of the Alternaria brassicicola non-ribosomal peptide synthetase gene AbNPS2 reveals a role in conidial cell wall construction
Authors:KWANG-HYUNG KIM  YANGRAE CHO  MAURICIO LA ROTA  ROBERT A. CRAMER JR   AND CHRISTOPHER B. LAWRENCE
Affiliation:Virginia Bioinformatics Institute and Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, NC 27708-9902, USA
Abstract:Alternaria brassicicola is a necrotrophic pathogen causing black spot disease on virtually all cultivated Brassica crops worldwide. In many plant pathosystems fungal secondary metabolites derived from non-ribosomal peptide synthetases (NPSs) are phytotoxic virulence factors or are antibiotics thought to be important for niche competition with other micro-organisms. However, many of the functions of NPS genes and their products are largely unknown. In this study, we investigated the function of one of the A. brassicicola NPS genes, AbNPS2 . The predicted amino acid sequence of AbNPS2 showed high sequence similarity with A. brassicae , AbrePsy1, Cochliobolus heterostrophus , NPS4 and a Stagonospora nodorum NPS. The AbNPS2 open reading frame was predicted to be 22 kb in length and encodes a large protein (7195 amino acids) showing typical NPS modular organization. Gene expression analysis of AbNPS2 in wild-type fungus indicated that it is expressed almost exclusively in conidia and conidiophores, broadly in the reproductive developmental phase. AbNPS2 gene disruption mutants showed abnormal spore cell wall morphology and a decreased hydrophobicity phenotype. Conidia of abnps2 mutants displayed an aberrantly inflated cell wall and an increase in lipid bodies compared with wild-type. Further phenotypic analyses of abnps2 mutants showed decreased spore germination rates both in vitro and in vivo , and a marked reduction in sporulation in vivo compared with wild-type fungus. Moreover, virulence tests on Brassicas with abnps2 mutants revealed a significant reduction in lesion size compared with wild-type but only when aged spores were used in experiments. Collectively, these results indicate that AbNPS2 plays an important role in development and virulence.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号