首页 | 本学科首页   官方微博 | 高级检索  
   检索      


De novo 3D models of SARS-CoV-2 RNA elements from consensus experimental secondary structures
Authors:Ramya Rangan  Andrew M Watkins  Jose Chacon  Rachael Kretsch  Wipapat Kladwang  Ivan N Zheludev  Jill Townley  Mats Rynge  Gregory Thain  Rhiju Das
Institution:Biophysics Program, Stanford University, Stanford, CA 94305, USA;Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA;Eterna Massive Open Laboratory;Information Sciences Institute, University of Southern California, Marina Del Rey, CA 90292, USA;Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI 53706 USA;Department of Physics, Stanford University, Stanford, CA 94305, USA
Abstract:The rapid spread of COVID-19 is motivating development of antivirals targeting conserved SARS-CoV-2 molecular machinery. The SARS-CoV-2 genome includes conserved RNA elements that offer potential small-molecule drug targets, but most of their 3D structures have not been experimentally characterized. Here, we provide a compilation of chemical mapping data from our and other labs, secondary structure models, and 3D model ensembles based on Rosetta''s FARFAR2 algorithm for SARS-CoV-2 RNA regions including the individual stems SL1-8 in the extended 5′ UTR; the reverse complement of the 5′ UTR SL1-4; the frameshift stimulating element (FSE); and the extended pseudoknot, hypervariable region, and s2m of the 3′ UTR. For eleven of these elements (the stems in SL1–8, reverse complement of SL1–4, FSE, s2m and 3′ UTR pseudoknot), modeling convergence supports the accuracy of predicted low energy states; subsequent cryo-EM characterization of the FSE confirms modeling accuracy. To aid efforts to discover small molecule RNA binders guided by computational models, we provide a second set of similarly prepared models for RNA riboswitches that bind small molecules. Both datasets (‘FARFAR2-SARS-CoV-2’, https://github.com/DasLab/FARFAR2-SARS-CoV-2; and ‘FARFAR2-Apo-Riboswitch’, at https://github.com/DasLab/FARFAR2-Apo-Riboswitch’) include up to 400 models for each RNA element, which may facilitate drug discovery approaches targeting dynamic ensembles of RNA molecules.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号