Measurement of diameters of estuarine bacteria and particulates in natural water samples by use of a submicron particle analyzer |
| |
Authors: | John H. Paul Wade H. Jeffrey |
| |
Affiliation: | (1) Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, 53706 Madison, Wisconsin, USA |
| |
Abstract: | Desulfovibrio vulgaris strain Madison outcompetedMethanobacterium strain ivanov for hydrogen when sulfate was in excess because of higher cell yield and growth rate and a greater affinity for hydrogen as a consequence of a lower Km and higher Vmax for in vivo hydrogenase activity.Desulfovibrio vulgaris displayed a growth yield of 1.1 g/mol H2, a Km for tritium exchange of 4 M, and a specific in vivo hydrogenase activity of 2.17 DPM3H2O×103/g cell protein/h; whereasMethanobacterium strain ivanov had a yield of 0.6 g/mol H2, a Km for tritium exchange of 14 M, and a specific in vivo hydrogenase activity of 0.38 DPM3H2O×103/g cell protein/h. Under these physiological conditions, the Gibbs free-energy change associated with methanogenesis and sulfidogenesis from H2 was calculated to be-47.4 kJ/mol and-62.9 kJ/mol, respectively. When sulfidogenesis was limited by sulfate concentration, the methanogen was able to successfully compete with the sulfidogen for hydrogen. Competition between methanogens and sulfidogens for hydrogen is explained in terms of thermodynamic, kinetic, and other important considerations not discussed in the previous literature. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|