首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice
Authors:Liu C H  Chang S H  Narko K  Trifan O C  Wu M T  Smith E  Haudenschild C  Lane T F  Hla T
Institution:Center for Vascular Biology, Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
Abstract:The cyclooxygenase (COX)-2 gene encodes an inducible prostaglandin synthase enzyme that is overexpressed in adenocarcinomas and other tumors. Deletion of the murine Cox-2 gene in Min mice reduced the incidence of intestinal tumors, suggesting that it is required for tumorigenesis. However, it is not known if overexpression of Cox-2 is sufficient to induce tumorigenic transformation. We have derived transgenic mice that overexpress the human COX-2 gene in the mammary glands using the murine mammary tumor virus promoter. The human Cox-2 mRNA and protein are expressed in mammary glands of female transgenic mice and were strongly induced during pregnancy and lactation. Female virgin Cox-2 transgenic mice showed precocious lobuloalveolar differentiation and enhanced expression of the beta-casein gene, which was inhibited by the Cox inhibitor indomethacin. Mammary gland involution was delayed in Cox-2 transgenic mice with a decrease in apoptotic index of mammary epithelial cells. Multiparous but not virgin females exhibited a greatly exaggerated incidence of focal mammary gland hyperplasia, dysplasia, and transformation into metastatic tumors. Cox-2-induced tumor tissue expressed reduced levels of the proapoptotic proteins Bax and Bcl-x(L) and an increase in the anti-apoptotic protein Bcl-2, suggesting that decreased apoptosis of mammary epithelial cells contributes to tumorigenesis. These data indicate that enhanced Cox-2 expression is sufficient to induce mammary gland tumorigenesis. Therefore, inhibition of Cox-2 may represent a mechanism-based chemopreventive approach for carcinogenesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号