Abstract: | A simple method is described to perform docking of subtrates to proteins or probes to receptor molecules by a modification of molecular dynamics simulations. The method consists of a separation of the center-of-mass motion of the substrate from its internal and rotational motions, and a separate coupling to different thermal baths for both types of motion of the substrate and for the motion of the receptor. Thus the temperatures and the time constants of coupling to the baths can be arbitrarily varied for these three types of motion, allowing either a frozen or a flexible receptor and allowing control of search rate without disturbance of internal structure. In addition, an extra repulsive term between substrate and protein was applied to smooth the interaction. The method was applied to a model substrate docking onto a model surface, and to the docking of phosphocholine onto immunoglobulin McPC603, in both cases with a frozen receptor. Using transrational temperatures of the substrate in the range of 1300–1700 K and room temperature for the internal degrees of freedom of the substrate, an efficient nontrapping exploratory search (“helicopter view”) is obtained, which visits the correct binding sites. Low energy conformations can then be further investigated by separate search or by dynamic simulated annealing. In both cases the correct minima were identified. The possibility to work with flexible receptors is discussed. © 1994 Wiley-Liss, Inc. |