首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants
Authors:Wu Shuiqin  Schalk Michel  Clark Anthony  Miles R Brandon  Coates Robert  Chappell Joe
Institution:Department of Plant & Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA.
Abstract:Terpenes constitute a distinct class of natural products that attract insects, defend against phytopathogenic microbes and combat human diseases. However, like most natural products, they are usually made by plants and microbes in small amounts and as complex mixtures. Chemical synthesis is often costly and inefficient, and may not yield enantiomerically pure terpenes, whereas large-scale microbial production requires expensive feedstocks. We engineered high-level terpene production in tobacco plants by diverting carbon flow from cytosolic or plastidic isopentenyl diphosphate through overexpression in either compartment of an avian farnesyl diphosphate synthase and an appropriate terpene synthase. Isotopic labeling studies suggest little, if any, metabolite exchange between these two subcellular compartments. The strategy increased synthesis of the sesquiterpenes patchoulol and amorpha-4,11-diene more than 1,000-fold, as well as the monoterpene limonene 10-30 fold, and seems equally suited to generating higher levels of other terpenes for research, industrial production or therapeutic applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号