首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Extreme Phosphate Deficiency Decreases the In Vivo CO2/O2 Specificity Factor of Ribulose 1,5-Bisphosphate Carboxylase-Oxygenase in Intact Leaves of Sunflower
Authors:JACOB  J; LAWLOR  D W
Abstract:Sunflower plants were grown under controlled environmental conditionswith either 0 or 10 mol m–3 phosphate (Pi). From steady-statemeasurements of gas exchange and chlorophyll fluorescence madeon intact leaves, the in vivo CO2/O2 specificity factor (invivo Ksp) of ribulose 1,5-Aisphosphate carboxylase-oxygenase(Rubisco) was determined following two methods based on modelsof C3 photosynthesis by Brooks and Farquhar (1985) and Peterson(1989). The two methods gave in vivo Ksp values for controlsunflower leaves which were similar to published values forhigher plants. Extreme Pi deficiency decreased in vivo Ksp,in sunflower leaves compared to adequate Pi. This suggests thatPi deficiency affected photorespiration less than photosynthesis.The decrease in in vivo Ksp may be due to a real change in theenzyme kinetics favouring oxygenation more than carboxylationor due to an increase in the number of CO2 molecules releasedper oxygenation; in which case the observed decrease in thein vivo Ksp determined on intact leaves will not agree numericallywith the true Ksp of Rubisco determined in vitro using purifiedenzyme from the same leaf. We discuss the implications of therelatively large photorespiration in Pi-deficient sunflowerleaves with respect to the increased dissipation of photosyntheticelectrons and photorespiratory recycling of Pi in thechloroplaststroma. Although our results on in vivo Ksp suggested a relativelylarger photorespiratory potential in Pi-deficient than controlsunflower leaves, photosynthesis was insensitive to O2 in Pi-deficientleaves; the possible reasons for this phenomenon are discussed.Under extreme Pi deficiency, O2 sensitivity of photosynthesisis not a reflection of the in vivo photorespiratory rates. Determinationof in vivo Ksp of Rubisco is a useful approach to study thephotorespiratory potential of intact leaves. Key words: Chlorophyll fluorescence, phosphate deficiency, photorespiration, photosynthesis, PSII quantum yield, Rubisco specificity factor
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号