首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cellular preservation of excysting developmental stages of new eukaryotes from the early Ediacaran Weng’an Biota
Institution:1. School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK;2. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;3. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology & Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China;4. University of Science and Technology of China, Hefei 230026, China
Abstract:The Ediacaran Weng’an Biota provides a unique window on marine diversity during the interval in which the fundamental animal body plans were being established. Here we describe a previously unreported component of the assemblage, millimeter-scale encysted spheres that exhibit a characteristic but simple slit-shaped excystment mechanism (Sporosphaera guizhouensis n. gen. n. sp.), reminiscent of acritarchs. The cysts contain a large inner body or numerous small discrete membrane-bounded bodies. It is possible that the inner bodies represent disaggregated cells of a multicellular body, like an embryo, but there is no evidence to support this interpretation and the occurrence of the excystment structure is not readily compatible with an embryo interpretation. Rather, we interpret the encysted organisms as multicellular stages within the lifecycle of otherwise probably unicellular eukaryotes. The developmental mode exhibited by Sporosphaera, incorporating a resting stage, implies an adaptation to adverse environmental conditions. This parallels the appearance of Large Ornamented Ediacaran Microfossils (LOEMs) which have been interpreted as diapause stages in the embryology of early animals. Sporosphaera is distinct from LOEMs by ornamentation instead of size, which may implicate that not all LOEMs are animal embryos, if any.
Keywords:Weng’an Biota  Ediacaran  Acritarch  Eukaryote  Excystment mechanism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号