首页 | 本学科首页   官方微博 | 高级检索  
     


Development of an artificial neuronal network with post-mitotic rat fetal hippocampal cells by polyethylenimine
Authors:Liu Bingfang  Ma Jun  Gao Erjing  He Yu  Cui Fuzhai  Xu Qunyuan
Affiliation:Beijing Institute for Neuroscience, Beijing Center for Neural Regeneration and Repairing, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, PR China.
Abstract:The selection of appropriate surface materials that promote cellular adhesion and growth is an important consideration when designing a simplified neuronal network in vitro. In the past, extracellular matrix proteins such as laminin (LN) or positively charged substances such as poly-l-lysine (PLL) have been used. In this study, we examined the ability of another positively charged polymer, polyethyleneimine (PEI), to promote neuronal adhesion, growth and the formation of a functional neuronal network in vitro. PEI, PLL and LN were used to produce grid-shape patterns on glass coverslips by micro-contact printing. Post-mitotic neurons from the rat fetal hippocampus were cultured on the different polymers and the viability and morphology of these neurons under serum-free culture conditions were observed using fluorescent microscopy and atomic force microscopy (AFM). We show that neurons cultured on the PEI- and PLL-coated surfaces adhered to and extended neurites along the grid-shape patterns, whereas neurons cultured on the LN-coated coverslips clustered into clumps of cells. In addition, we found that the neurons on the PEI and PLL-coated grids survived for more than 2 weeks in serum-free conditions, whereas most neurons cultured on the LN-coated grids died after 1 week. Using AFM, we observed some neurosynapse-like structures near the neuronal soma on PEI-coated coverslips. These findings indicate that PEI is a suitable surface for establishing a functional neuronal network in vitro.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号