首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mannitol in six autotrophic stramenopiles and Micromonas
Authors:Simon M Dittami  Hoai TN Aas  Berit Smestad Paulsen  Catherine Boyen  Bente Edvardsen  Thierry Tonon
Institution:1.Department of Biology; University of Oslo; Oslo, Norway;2.Department of Pharmaceutical Chemistry; School of Pharmacy; Division of Pharmacognocy; University of Oslo; Oslo, Norway;3.UPMC Univ Paris 6; Roscoff, France;4.CNRS; UMR 7139 Marine Plants and Biomolecules; Station Biologique; Roscoff, France
Abstract:Mannitol plays a central role in brown algal physiology since it represents an important pathway used to store photoassimilate. Several specific enzymes are directly involved in the synthesis and recycling of mannitol, altogether forming the mannitol cycle. The recent analysis of algal genomes has allowed tracing back the origin of this cycle in brown seaweeds to a horizontal gene transfer from bacteria, and furthermore suggested a subsequent transfer to the green micro-alga Micromonas. Interestingly, genes of the mannitol cycle were not found in any of the currently sequenced diatoms, but were recently discovered in pelagophytes and dictyochophytes. In this study, we quantified the mannitol content in a number of ochrophytes (autotrophic stramenopiles) from different classes, as well as in Micromonas. Our results show that, in accordance with recent observations from EST libraries and genome analyses, this polyol is produced by most ochrophytes, as well as the green alga tested, although it was found at a wide range of concentrations. Thus, the mannitol cycle was probably acquired by a common ancestor of most ochrophytes, possibly after the separation from diatoms, and may play different physiological roles in different classes.Key words: algae, stramenopiles, mannitol cycle, primary metabolism, osmotic stress, evolutionBrown algae produce mannitol directly from the photoassimilate fructose-6-phosphate. Its metabolism occurs through the mannitol cycle, which involves four enzymatic reactions: (1) the reduction of fructose-6-phosphate (F6P) to mannitol-1-phosphate (M1P) via the activity of an M1P dehydrogenase (M1PDH); (2) the production of mannitol from M1P via an M1P phosphatase (M1Pase); (3) the oxidation of mannitol via the activity of a mannitol-2-dehydrogenase (M2DH) yielding fructose; and (4) the phosphorylation of fructose yielding F6P and involving a hexokinase (HK).1,2 The first completed draft of a brown algal genome enabled the identification of candidate genes for each of these steps.3 As these genes were not found in the genomes of the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum, mannitol metabolism in stramenopiles was considered a trait typical for brown algae. The corresponding genes were thought to have been acquired horizontally from bacteria and subsequently transferred to some green algae.4 Recently, however, homologs of several genes of the cycle were also found in the genome of the pelagophyte Aureococcus anophagefferens5 and an EST library produced for the dictyochophyte Pseudochattonella farcimen (Dittami et al. personal communication). These observations prompted us to examine the presence of mannitol in a range of strains covering different classes of autotrophic stramenopiles (ochrophytes). In addition, because of the identification of genes encoding enzymes for the production of mannitol through the mannitol cycle in the green alga Micromonas, one strain of this genus was also included in our analysis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号