Conductive chloride flux across amphibian skin: inhibition by indacrinone and cobalt ion. |
| |
Authors: | V Beaujean J Crabbé |
| |
Affiliation: | Department of Physiology, U.C.L. Medical School, Brussels, Belgium. |
| |
Abstract: | When amphibian skin was incubated under conditions in which transepithelial sodium transport was abolished, a conductive transepithelial Cl- flux arose when Cl- was removed from one of the compartments. This flux was matched by short-circuit current and it accounted entirely for transepithelial conductance. Cl- influx was larger than efflux; it was linearly related to the magnitude of transepithelial Cl- concentration difference. When applied to the epithelial surface of the tissue, divalent metal cations such as Co2+, and the ethacrynic acid derivative, indacrinone, reduced rapidly and reversibly both transepithelial Cl- (in)flux and short-circuit current. Frog skin proved to be more sensitive to these inhibitors than toad skin. Further characterization of transepithelial Cl- pathway(s) should benefit from the fact that Cl- across amphibian skin can easily be monitored by the short-circuit current method, and from the availability of agents which inhibit this passive flux rapidly and reversibly. |
| |
Keywords: | |
|
|