首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Predicting redox-sensitive cysteines in plant enzymes by homology modeling
Institution:1. Genomics and Central Research Laboratory, Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar, India-563101;2. Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore, India-560012
Abstract:One of the unsolved problems in plant biochemistry has been the identification of the regulatory cysteines in the reductively light-activated and -inactivated chloroplast enzymes. Homology modeling based on the sequences of these enzymes and the three-dimensional structures of homologous enzymes has now allowed tentative identification of the redox-sensitive Cys residues in four light-activated chloroplast enzymes. In each case the regulatory disulfides are not positioned in the active site but instead appear to be positioned so as to affect the flexibility or the conformation of the enzyme, and thereby to affect catalysis. In glyceraldehyde-3-P dehydrogenase and malate dehydrogenase inter-domain movement would be restricted. In fructose bisphosphatase and sedoheptulose bisphosphatase the regulatory Cys residues are located on the nucleotide binding domain in a region known to be sensitive to an allosteric effector of other fructose bisphosphatases. Results of site-directed mutagenesis experiments to date are in general agreement with the domain-locking hypothesis. The redox sensitivity of a number of cytosolic enzymes suggests that reductive modulation might occur outside of the chloroplast in leaves, and in the roots, stems and germinating seeds of green plants. Our better understanding of the mechanism of redox regulation may lead to new approaches for the regulation of enzyme activity with biotechnological applications.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号