首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Some effects of Ca2+, Mg2+, and Mn2+ on the ultrastructure,light-scattering properties,and malic enzyme activity of adrenal cortex mitochondria
Authors:DR Pfeiffer  TH Kuo  TT Tchen
Institution:Department of Chemistry, Wayne State University, Detroit, Michigan 48202 USA
Abstract:The ultrastructure and 90 ° light-scattering capacity of adrenal cortex mitochondria have been examined under conditions which lead to an activation of malic enzyme activity in these mitochondria. After isolation, the mitochondria display an aggregate ultrastructure which does not resemble the vesicular (orthodox) form normally seen in vivo. Under conditions of malic enzyme activation (presence of malate, NADP+, Mg2+ and 1 mm Ca2+), the ultrastructure reverts to a vesicular form as seen in vivo. Of these required components, only Ca2+ affects the ultrastructure. The ultrastructural transformation from the aggregate to the orthodox form is always accompanied by a decrease in the 90 ° light-scattering capacity. When produced by Ca2+, transformation requires energy-dependent Ca2+ uptake if an oxidizable substrate is present. In the absence of substrate, the transformation occurs as an apparent energy-independent effect. Mn2+ can substitute for Ca2+ only in the presence of substrate. In de-energized mitochondria, Mn2+ prevents the effects of Ca2+. The activation of malic enzyme is always preceded by a decrease in light scattering and transformation to the orthodox ultrastructure; however, the presence of the orthodox form is not a sufficient condition since subsequent chelation of free Ca2+ fails to reverse either the decrease in light scattering or ultrastructural transformation but does reverse the enzyme activation. In addition, levels of Mn2+ which effectively depress light-scattering capacity and produce the orthodox form, fail to activate malic enzyme significantly. The data are discussed as they relate to Ca2+-induced damage in mitochondria.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号