首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The salt resistance of wild soybean (Glycine soja Sieb. et Zucc. ZYD 03262) under NaCl stress is mainly determined by Na+ distribution in the plant
Authors:Zhongcai Xue  Shijie Zhao  Huiyuan Gao  Shan Sun
Institution:1. State Key Lab of Crop Biology, Tai’an, 271018, China
2. College of Life Sciences, Shandong Agricultural University, Tai’an, 271018, China
3. Forestry School, Shandong Agricultural University, Tai’an, 271018, China
Abstract:Understanding the salt resistance mechanism of wild soybean is important in improving salt tolerance of cultivated soybean. Therefore, we comparatively analyzed effects of NaCl on photosynthesis, antioxidant enzyme activity, and ion distribution in a cultivated (Glycine. max) and a wild (Glycine soja) soybean to study the salt resistance mechanism of the G. soja. The results showed that more Na+ was accumulated in the G. soja roots than in the G. max roots, but the Na+ in the G. soja leaves was much less than that observed in the G. max leaves. The Na+ concentrations in the G. soja leaves were not high enough to affect the photosynthetic apparatus, which was demonstrated by less inhibition of photosynthetic activity, stomatal conductance, carboxylation efficiency in the G. soja leaves than in the G. max leaves after treated with different concentrations of NaCl. Meanwhile, there were no significant changes in intercellular CO2 concentration, maximum PSII quantum yield, and relative water content in the G. soja leaves after NaCl treatment, while they significantly decreased in the G. max leaves. The non-photochemical quenching and the activities of superoxide dismutase (EC 1.15.1.1) and ascorbate peroxidase (EC 1.11.1.11) in the G. soja leaves increased with the increasing of NaCl concentrations, whereas only the activity of superoxide dismutase increased in G. max leaves. Based on these results, we suggested that the G. soja is able to accumulate higher levels of Na+ in its roots, and prevent the transportation of Na+ to leaves to protect photosynthetic apparatus from salt damage.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号