首页 | 本学科首页   官方微博 | 高级检索  
     


Mitochondria and microsomal membranes have a free radical reductase activity that prevents chromanoxyl radical accumulation
Authors:L Packer  J J Maguire  R J Mehlhorn  E Serbinova  V E Kagan
Affiliation:Applied Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley 94720.
Abstract:
Enzyme-dependent mechanisms which prevent accumulation of chromanoxyl radicals derived from the vitamin E analogue, 2,2,5,7,8-pentamethyl-6-hydroxycromane (PMC), were characterized in rat liver microsomal and mitochondrial membranes. The free radical oxidation product of PMC (chromanoxyl radical) was generated in membranes using either photochemical (uv light) or enzymatic (lipoxygenase and arachidonic acid) methods and detected by ESR. Substrates (NADH or NADPH) prevented accumulation of chromanoxyl radicals until the substrate was fully consumed. In microsomes, reduced glutathione increased the efficacy of NADPH in preventing the accumulation of the chromanoxyl radical, but was without effect in the absence of NADPH. Ascorbate also prevented accumulation of the chromanoxyl radical. It is concluded that rat liver microsomes and mitochondria have both enzymatic and non-enzymatic mechanisms for reducing chromanoxyl radicals.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号