首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spine production is induced by fire: a natural experiment with three Berberis species
Authors:Juan Gowda  Estela Raffaele
Institution:Laboratorio Ecotono, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Cc 1718, Bariloche, 8400, Río Negro, Argentina
Abstract:Earlier studies indicate that some plant species allocate more mass to produce longer spines in shoots resprouting after browsing. Here we present, for the first time, evidence that fire induces a similar response. Many terrestrial herbivores may benefit from fire through the enhanced availability of fast growing species colonizing or re-sprouting in burned areas. It is less clear whether post-fire plant growth responds to the enhanced risk of herbivory by an increased investment in defensive traits. In this study, we tested whether the production of spines is influenced by the set of environmental conditions that result from fire events. We compared the resource allocation pattern of resprouting shoots from three Berberis species growing in two areas that burned 1999 with samples collected from unburned areas within the same plant communities. We divided the shoot into three main components: supporting tissue (twigs), assimilating tissue (leaves) and defensive structures (spines). We found that plants resprouting after fire allocated more mass to spines and leaves but not twigs. This resulted in a higher density of both spines and leaves. Spines were significantly longer in plants resprouting after fire. Leaves were shorter at the apical end of the shoot, but did not show any significant change in size following fire. We suggest that this type of post-fire response may be a general adaptation to pruning and leaf picking by browsing herbivores in arid and semi-arid regions. Changes in the browsing pressure following fire will determine the fitness value of this response.
Keywords:Mechanical defenses  Plant–  animal interaction  Regrowth  Patagonia
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号