首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Alterations in autonomic function and cerebral hemodynamics to orthostatic challenge following a mountain marathon.
Authors:Carissa Murrell  Luke Wilson  James D Cotter  Samuel Lucas  Shigehiko Ogoh  Keith George  Philip N Ainslie
Institution:Department of Physiology, University of Otago, Dunedin, New Zealand.
Abstract:We examined potential mechanisms (autonomic function, hypotension, and cerebral hypoperfusion) responsible for orthostatic intolerance following prolonged exercise. Autonomic function and cerebral hemodynamics were monitored in seven athletes pre-, post- (<4 h), and 48 h following a mountain marathon 42.2 km; cumulative gain approximately 1,000 m; approximately 15 degrees C; completion time, 261 +/- 27 (SD) min]. In each condition, middle cerebral artery blood velocity (MCAv), blood pressure (BP), heart rate (HR), and cardiac output (Modelflow) were measured continuously before and during a 6-min stand. Measurements of HR and BP variability and time-domain analysis were used as an index of sympathovagal balance and baroreflex sensitivity (BRS). Cerebral autoregulation was assessed using transfer-function gain and phase shift in BP and MCAv. Hypotension was evident following the marathon during supine rest and on standing despite increased sympathetic and reduced parasympathetic control, and elevations in HR and cardiac output. On standing, following the marathon, there was less elevation in normalized low-frequency HR variability (P < 0.05), indicating attenuated sympathetic activation. MCAv was maintained while supine but reduced during orthostasis postmarathon -10.4 +/- 9.8% pre- vs. -15.4 +/- 9.9% postmarathon (%change from supine); P < 0.05]; such reductions were related to an attenuation in BRS (r = 0.81; P < 0.05). Cerebral autoregulation was unchanged following the marathon. These findings indicate that following prolonged exercise, hypotension and postural reductions in autonomic function or baroreflex control, or both, rather than a compromise in cerebral autoregulation, may place the brain at risk of hypoperfusion. Such changes may be critical factors in collapse following prolonged exercise.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号