首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effect of methotrexate on intracellular folate pools in human MCF-7 breast cancer cells. Evidence for direct inhibition of purine synthesis
Authors:C J Allegra  R L Fine  J C Drake  B A Chabner
Abstract:This report details the effects of methotrexate on the intracellular folate pools of the MCF-7 human breast cancer cell line. To achieve this goal, we designed a high-pressure liquid chromatography system capable of separating the physiologic folates. The folate pools were quantitated following growth and equilibration in 2.25 microM radiolabeled folic acid. Each of the intracellular folates was identified by coelution with standard folates and by chemical/biochemical tests unique to each of the various folates. The 10-formyl-H4PteGlu (where H4PteGlu represents dl-tetrahydrofolic acid) pool accounted for 20.5% of the total intracellular folate pool in untreated cells, whereas 5-formyl-H4PteGlu and H4PteGlu accounted for 6.5 and 10.6%, respectively. The levels of these three folates remained stable throughout cell growth. The 5-methyl-H4PteGlu pool accounted for less than 10% in early growth phase cells but assumed greater than 60% of the total pool by the mid- and late-log phases of cell growth. When the MCF-7 cells were exposed to 1 microM methotrexate, de novo purine synthesis and de novo thymidylate synthesis were rapidly inhibited to less than 20% of control within 3 h. During this time period, rapid alterations in the folate pools also occurred such that dihydrofolic acid levels rose from less than 1% in untreated cells to greater than 30% of the total pool. This rise was accompanied by a parallel fall in 5-methyl-H4PteGlu. H4PteGlu and 5-formyl-H4PteGlu were undetectable following 2 h of methotrexate exposure, but 10-formyl-H4PteGlu, the required cosubstrate for de novo purine synthesis, was preserved at greater than 80% of pretreatment values following a 1 microM methotrexate exposure of up to 21 h. The rapid inhibition of de novo purine synthesis in these cells following methotrexate exposure coupled with a relatively preserved 10-formyl-H4PteGlu pool suggests direct inhibition of this synthetic pathway by the temporally coincident accumulation of dihydrofolic acid and/or methotrexate polyglutamates. This inhibition cannot be ascribed to depletion of the folate cofactor 10-formyl-H4PteGlu.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号