首页 | 本学科首页   官方微博 | 高级检索  
     


Improvement of the performance of H2O2 oxidation at low working potential by incorporating TTF-TCNQ into a platinum wire electrode for glucose determination
Authors:Li Q S  Ye B C  Liu B X  Zhong J J
Affiliation:State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.
Abstract:
A micro-biosensor was constructed by incorporating the organic conducting salt tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) into a platinized platinum (Pt) wire and further covering with the electrochemical polymerical heteropolypyrrole film, in which glucose oxidase (GOx) was entrapped. The enzyme electrode can sensitively determine glucose at a low working potential, mainly based on the oxidation of H2O2. The incorporated TTF-TCNQ can significantly improve the oxidation of H2O2 on the electrode, although a part of the TTF-TCNQ functions as a mediator. Compared with the same electrode prepared without TTF-TCNQ incorporated, the TTF-TCNQ modified electrode had better performance characteristics at a working potential of 200 mV (versus SCE). The response time to 90% of the steady value was shortened from about 40 s to less than 10 s, the lower limit of the linear response was greatly extended from about 1.6 mM to 10 microM, the linear range was shifted from 1.6-10.0 to 0.01-5 mM and the sensitivity was increased from about 1 to 1.5 microA/mM. The electrode was quite stable. For continuous operation, the electrode could work for about 5 weeks and only lost 60% of its original sensitivity. Stored at 4 degrees C for intermittent determinations, the electrode kept 80% sensitivity for over 6 months. Due to covering the electrode with a non-conductive heteropolypyrrole film, ascorbate, urate and 4-acetamidophenol caused only negligible current response at an applied potential of 200 mV.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号