首页 | 本学科首页   官方微博 | 高级检索  
     


Cl- transport by gastric mucosa: cellular Cl- activity and membrane permeability
Authors:T E Machen  T Zeuthen
Abstract:The mechanism of Cl- secretion in the isolated, resting (i.e. cimetidine-treated) gastric mucosa of Necturus has been investigated with radioisotopic and electrophysiological techniques. Measurement of transepithelial 36Cl- fluxes (mucosal to serosal (M leads to S), Jms Cl-; S leads to M, Jsm Cl-) during control conditions show that at open circuit, when the transepithelial potential difference psi ms = 20 mV (S ground), Jms Cl- = Jsm Cl-, i.e. Jnet Cl- = 0, but during short-circuit current conditions Jnet Cl- = I sc = 2 mu equiv cm-2 h. Experiments with low [Cl-] solutions indicate that Cl- exchange diffusion does not contribute significantly to either Jms Cl- or Jsm Cl-. Double-barrelled, Cl- -selective microelectrodes showed that in open circuit, the cellular (C) chemical potential for Cl-, psi c Cl- = 31 mV (apparent [Cl-] = 29 mM), the electrical potential across the M membrane, psi m = -34 mV (mucosa ground) while that across the S membrane, psi s = -52 mV (serosa ground). During short-circuit current conditions, psi m = psi s = -49 mV and [Cl-]c = 30 mM. The permeability of the M membrane to Cl- (Pm Cl-) was calculated both from the tracer experiments and the electrode measurements by using the constant-field equation. Short-term (45 s) uptake of 36Cl- at [Cl]m = 96 mM during short circuit conditions gave Pm Cl- = 2.6 x 10(-5) cm s-1. Measurement of [Cl-]c by means of the electrodes when [Cl-]m was changed from 96 to 2 mM or from 2 to 96 mM gave Pm Cl- = 2.9-5.7 x 10(-5) cm s-1. Our results indicate that during open circuit conditions Cl- is accumulated across the S membrane into gastric cells in an energy-requiring step, but since Jnet Cl- = 0, Cl- must leak back into the S solution at a rate equal to the entry rate. When the tissue is short-circuited, Cl- secretion occurs (Jnet Cl- = Isc) owing to the same energy-requiring accumulation of Cl- by the cells and a passive (apparently electrodiffusive) movement across the mucosal membrane.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号