首页 | 本学科首页   官方微博 | 高级检索  
   检索      


TRPM4 links calcium signaling to membrane potential in pancreatic acinar cells
Authors:Gyula Diszhzi  Zsuzsanna Magyar  Erika Lisztes  Edit Tth-Molnr  Pter P Nnsi  Rudi Vennekens  Balzs I Tth  Jnos Almssy
Institution:1.Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary;2.Department of Ophthalmology, University of Szeged, Szeged, Hungary;3.Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, Faculty of Medicine, TRP Research Platform Leuven, VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
Abstract:Transient receptor potential cation channel subfamily M member 4 (TRPM4) is a Ca2+-activated nonselective cation channel that mediates membrane depolarization. Although, a current with the hallmarks of a TRPM4-mediated current has been previously reported in pancreatic acinar cells (PACs), the role of TRPM4 in the regulation of acinar cell function has not yet been explored. In the present study, we identify this TRPM4 current and describe its role in context of Ca2+ signaling of PACs using pharmacological tools and TRPM4-deficient mice. We found a significant Ca2+-activated cation current in PACs that was sensitive to the TRPM4 inhibitors 9-phenanthrol and 4-chloro-2-2-(2-chlorophenoxy)acetyl]amino]benzoic acid (CBA). We demonstrated that the CBA-sensitive current was responsible for a Ca2+-dependent depolarization of PACs from a resting membrane potential of −44.4 ± 2.9 to −27.7 ± 3 mV. Furthermore, we showed that Ca2+ influx was higher in the TRPM4 KO- and CBA-treated PACs than in control cells. As hormone-induced repetitive Ca2+ transients partially rely on Ca2+ influx in PACs, the role of TRPM4 was also assessed on Ca2+ oscillations elicited by physiologically relevant concentrations of the cholecystokinin analog cerulein. These data show that the amplitude of Ca2+ signals was significantly higher in TRPM4 KO than in control PACs. Our results suggest that PACs are depolarized by TRPM4 currents to an extent that results in a significant reduction of the inward driving force for Ca2+. In conclusion, TRPM4 links intracellular Ca2+ signaling to membrane potential as a negative feedback regulator of Ca2+ entry in PACs.
Keywords:pancreas  acinar cells  calcium signaling  calcium imaging  calcium entry  ion channel  transient receptor potential channels  TRPM4  physiology  patch clamp
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号