首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fatty Acid Composition of the Complex Lipids of Staphylococcus aureus During the Formation of the Membrane-bound Electron Transport System
Authors:David C White and  Frank E Frerman
Abstract:In Staphylococcus aureus, 64 fatty acids could be separated by gas-liquid chromatography. The fatty acids consisted of normal, iso, and anteiso saturated fatty acids of from 10 to 21 carbon atoms. Of the total fatty acids, 2 to 4% were normal, iso, and anteiso monoenoic fatty acids. Positional isomers of the normal monoenoic fatty acids could be detected. The fatty acids could be extracted, leaving 1 to 2% of the total fatty acids in the residue. The proportions of the fatty acids in the residue and the total lipids differed significantly. The lipid extract contained less than 0.12% free fatty acid. Between 5 and 10% of the lipid fatty acids were associated with neutral lipids. The majority of the fatty acids were associated with the complex lipids: mono- and diglucosyl diglyceride, phosphatidyl glycerol, lysyl phosphatidyl glycerol, and cardiolipin. The proportions of the fatty acids changed markedly between bacteria grown anaerobically (no membrane-bound electron transport system) and those grown aerobically (containing a functional electron transport system). In each of the complex lipids, the proportions of the fatty acids, as well as the magnitude and direction of change in the molar quantity of the fatty acids per bacterium, changed dramatically between these growth conditions. Since the glucosyl diglycerides and phospholipids were formed from the same pool of diglyceride intermediates, the marked differences in fatty acids indicate that acyl transferase activities must be an important part of complex lipid metabolism in S. aureus.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号