首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Membrane Organization and Dynamics in Cell Polarity
Authors:Kelly Orlando and  Wei Guo
Institution:Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
Abstract:The establishment and maintenance of cell polarity is important to a wide range of biological processes ranging from chemotaxis to embryogenesis. An essential feature of cell polarity is the asymmetric organization of proteins and lipids in the plasma membrane. In this article, we discuss how polarity regulators such as small GTP-binding proteins and phospholipids spatially and kinetically control vesicular trafficking and membrane organization. Conversely, we discuss how membrane trafficking contributes to cell polarization through delivery of polarity determinants and regulators to the plasma membrane.Cell polarity is essential in most if not all eukaryotes for their development and physiological functions at the tissue and organism level. Although there are significant differences in gross morphology and function among various tissues and organisms, at the cellular level, the establishment and maintenance of cell polarity tend to follow common themes.A basic feature of cell polarity is the asymmetric organization of the plasma membrane (see McCaffrey and Macara 2009; Nelson 2009). This is mostly achieved through membrane trafficking along cytoskeleton tracks under the control of signaling molecules. In general, membrane trafficking occurs through sequential budding, transport, and fusion of vesicles from donor membranes to acceptor membranes (for recent reviews, see Bonifacino and Glick 2004; Cai et al. 2007). During budding, protein complexes interact with phospholipids to induce membrane curvature and generate vesicular carriers that capture different cargos from the donor compartments. After vesicles form, they are delivered to their acceptor compartments, most often along the cytoskeletons. Vesicle fusion at the acceptor membrane is mediated by the assembly of SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) complexes. Before membrane fusion, proteins or protein complexes tether the vesicles to the acceptor membranes and likely promote SNARE assembly. The Arf and Rab family of small GTPases are localized to different membrane compartments and regulate various stages of membrane trafficking.Polarized distribution of proteins at the plasma membrane often results from a balance of vesicle delivery and fusion with the plasma membrane (“exocytosis”), two-dimensional spread through the plasma membrane (“diffusion”), and internalization and membrane recycling (“endocytosis”). There are two main layers of regulation that control polarized protein transport and incorporation to the plasma membrane. The first involves sorting at the trans-Golgi network (TGN) and endosomal compartments, such as the recycling endosomes. Protein sorting involves recognition of sorting signals in the cargo proteins by the adaptor protein (AP) complexes. There are a number of different AP complexes, and each is localized to different membrane compartments and captures distinct sets of cargo proteins before targeting to their correct destination. Protein sorting before delivery to different domains of the plasma membrane has been best characterized in epithelial cells, which have distinctive basolateral and apical domains separated by junctional complexes. This layer of regulation has been discussed in a recent review (Mellman and Nelson 2008) and is further discussed by Nelson (Nelson 2009), so it will not be discussed further here. The second layer of regulation of membrane protein polarization is through the polarized tethering and docking of vesicles at specific domains of the plasma membrane (Fig. 1). Tethering proteins (i.e., the exocyst) target secretory vesicles to specific domains of the plasma membrane and SNARE assembly eventually drives membrane fusion. Proteins at the plasma membrane can be retrieved back into the cell via endocytosis. These proteins are internalized via clathrin-coated pits, and transported through different endosomal compartments either for degradation in the lysosomes or for recycling back to the plasma membrane. The endosomal compartment that mediates the transport of internalized plasma membrane proteins back to the cell surface is called the “recycling endosome.” Recycling endosomes are major sources of cargo destined to the plasma membrane for exocytosis in many types of cells.Open in a separate windowFigure 1.Membrane trafficking to the plasma membrane. Schematic of the endocytic and exocytic routes involving trans-Golgi network (TGN), endosomal compartments, and the plasma membrane. During exocytosis, cargo leaves the TGN or recycling endosomes in vesicular carriers to the plasma membrane. Once on the membrane, proteins can be internalized and transported to early endosomes, and then either travel through late endosomes to the lysosome to be degraded or return to the plasma membrane through the recycling endosomes. Early endosomes may serve as sorting stations for the next stages of cargo transport.Signaling molecules such as the Rho family of small GTPases spatially and kinetically regulate membrane trafficking during cell polarization (see McCaffrey and Macara 2009; Slaughter et al. 2009). Reversely, vesicular trafficking is required for the polarized deposition and accrual of these regulators. In the first part of this article, we examine the membrane organization and dynamics of cell polarity, focusing on the polarized tethering and docking of vesicles at the plasma membrane. We highlight key components and regulators of polarized exocytosis including the exocyst, small GTPases, and phospholipids. We also use different organisms and systems to show analogous mechanisms during cell polarization. In the second part of this article, we focus on the aforementioned reciprocal effects of cell polarity and membrane trafficking using two representative examples, one from yeast (Cdc42 polarization) and one in mammalian epithelial cells (E-cadherin trafficking).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号