首页 | 本学科首页   官方微博 | 高级检索  
     


Computational characterization of structural role of the non-active site mutation M36I of human immunodeficiency virus type 1 protease
Authors:Ode Hirotaka  Matsuyama Shou  Hata Masayuki  Neya Saburo  Kakizawa Junko  Sugiura Wataru  Hoshino Tyuji
Affiliation:Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan. odehir@graduate.chiba-u.jp
Abstract:
A prominent characteristic of human immunodeficiency virus type 1 (HIV-1) is its high genetic variability, which generates diversity of the virus and often causes a serious problem of the emergence of drug-resistant mutants. Subtype B HIV-1 is dominant in advanced countries, and the mortality rate due to subtype B HIV-1 has been decreased during the past decade. In contrast, the number of patients with non-subtype B viruses is still increasing in developing countries. One of the reasons for the prevalence of non-subtype B viruses is lack of information about the biological and therapeutic differences between subtype B and non-subtype B viruses. M36I is the most frequently observed polymorphism in non-subtype B HIV-1 proteases. However, since the 36th residue is located at a non-active site of the protease and has no direct interaction with any ligands, the structural role of M36I remains unclear. Here, we performed molecular dynamics (MD) simulations of M36I protease in complex with nelfinavir and revealed the influence of the M36I mutation. The results show that M36I regulates the size of the binding cavity of the protease. The reason for the rare emergence of D30N variants in non-subtype B HIV-1 proteases was also clarified from our computational analysis.
Keywords:HIV-1, human immunodeficiency virus type 1   PR, protease   PI, protease inhibitor   NFV, nelfinavir   FDA, Food and Drug Administration   WT, wild-type   MD, molecular dynamics
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号