首页 | 本学科首页   官方微博 | 高级检索  
     


The coupling of catalytically relevant conformational fluctuations in subtilisin BPN' to solution viscosity revealed by hydrogen isotope exchange and inhibitor binding
Authors:Ng K  Rosenberg A
Affiliation:Department of Laboratory Medicine and Pathology, and Graduate Program in Biophysical Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
Abstract:We have measured the tritium outexchange of subtilisin BPN'. A consistent and rather small group of hydrogens was isolated by their sensitivity to inhibitor binding. The viscosity dependence of exchange from these inhibitor protected hydrogens was then examined in 0.05 M MES buffer, pH 6.5 and 10 degrees C. The viscosity of the reaction medium was varied by added glycerol and ethylene glycol. The exchange rates were corrected to be compared at identical hydroxyl ion and water activity. The salient observation is the strikingly similar viscosity coupling behavior when compared to the deacylation step of ester hydrolysis catalyzed by the same enzyme (Ng and Rosenberg, Biophysical Chemistry, 39 (1991) 57). We have obtained a viscosity coupling constant of 0.68 -/+ 0.18 for hydrogen exchange in glycerol (cf. 0.65 -/+ 0.11 for deacylation in glycerol, sucrose, glucose and fructose); 1.67 -/+ 0.07 for outexchange (cf. 1.92 -/+ 0.09 for deacylation), in the presence of ethylene glycol. The two reactions are very chemically dissimilar, yet they show very similar viscosity coupling behavior. This together with the well established role of structural fluctuations in hydrogen exchange implies a similar role of structural fluctuations in the deacylation step of subtilisin BPN' catalyzed ester hydrolysis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号