首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana
Authors:Jean-Marc Routaboul  Lucien Kerhoas  Isabelle Debeaujon  Lucille Pourcel  Michel Caboche  Jacques Einhorn  Loïc Lepiniec
Institution:(1) Laboratoire de Biologie des Semences, UMR 204 INRA-INAPG, Institut Jean-Pierre Bourgin, 78026 Versailles Cedex, France;(2) Laboratoire de Phytopharmacie et Médiateurs Chimiques, INRA, 78026 Versailles Cedex, France
Abstract:Functional characterization of genes involved in the flavonoid metabolism and its regulation requires in-depth analysis of flavonoid structure and composition of seed from the model plant Arabidopsis thaliana. Here, we report an analysis of the diverse and specific flavonoids that accumulate during seed development and maturation in wild types and mutants. Wild type seed contained more than 26 different flavonoids belonging to flavonols (mono and diglycosylated quercetin, kaempferol and isorhamnetin derivatives) and flavan-3-ols (epicatechin monomers and soluble procyanidin polymers with degrees of polymerization up to 9). Most of them are described for the first time in Arabidopsis. Interestingly, a novel group of four biflavonols that are dimers of quercetin-rhamnoside was also detected. Quercetin-3-O-rhamnoside (the major flavonoid), biflavonols, epicatechin and procyanidins accumulated in the seed coat in contrast to diglycosylated flavonols that were essentially observed in the embryo. Epicatechin, procyanidins and an additional quercetin-rhamnoside-hexoside derivative were synthesized in large quantities during seed development, whereas quercetin-3-O-rhamnoside displayed two peaks of accumulation. Finally, 11 mutants affected in known structural or regulatory functions of the pathway and their three corresponding wild types were also studied. Flavonoid profiles of the mutants were consistent with previous predictions based on genetic and molecular data. In addition, they also revealed the presence of new products in seed and underlined the plasticity of this metabolic pathway in the mutants.
Keywords:Arabidopsis                              Arabidopsis tt mutants  Flavonols  Proanthocyanidins  Seed development  Tannin
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号