首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression, purification and characterisation of soluble GlfT and the identification of a novel galactofuranosyltransferase Rv3782 involved in priming GlfT-mediated galactan polymerisation in Mycobacterium tuberculosis
Authors:Alderwick Luke J  Dover Lynn G  Veerapen Natacha  Gurcha Sudagar S  Kremer Laurent  Roper David L  Pathak Ashish K  Reynolds Robert C  Besra Gurdyal S
Institution:aSchool of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;bUniversité Montpellier II, Case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France;cDepartment of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK;dDrug Discovery Division, Southern Research Institute, P.O. Box 55305, Birmingham, AL 35225-5305, USA
Abstract:The arabinogalactan (AG) component of the mycobacterial cell wall is an essential branched polysaccharide which tethers mycolic acids (m) to peptidoglycan (P), forming the mAGP complex. Much interest has been focused on the biosynthetic machinery involved in the production of this highly impermeable shield, which is the target for numerous anti-tuberculosis agents. The galactan domain of AG is synthesised via a bifunctional galactofuranosyltransferase (GlfT), which utilises UDP-Galf as its high-energy substrate. However, it has proven difficult to study the protein in its recombinant form due to difficulties in recovering pure soluble protein using standard expression systems. Herein, we describe the effects of glfT co-induction with a range of chaperone proteins, which resulted in an appreciable yield of soluble protein at 5 mg/L after a one-step purification procedure. We have shown that this purified enzyme transfers 14C]Galf to a range of both β(1 → 5) and β(1 → 6) linked digalactofuranosyl neoglycolipid acceptors with a distinct preference for the latter. Ligand binding studies using intrinsic tryptophan fluorescence have provided supporting evidence for the apparent preference of this enzyme to bind the β(1 → 6) disaccharide acceptor. However, we could not detect binding or galactofuranosyltransferase activity with an n-octyl β-d-Gal-(1 → 4)-α-l-Rha acceptor, which mimics the reducing terminus of galactan in the mycobacterial cell wall. Conversely, after an extensive bioinformatics analysis of the H37Rv genome, further cloning, expression and functional analysis of the Rv3792 open reading frame indicates that this protein affords galactofuranosyltransferase activity against such an acceptor and paves the way for a better understanding of galactan biosynthesis in Mycobacterium tuberculosis.
Keywords:Mycobacterium  Tuberculosis  Cell wall  Arabinogalactan  Glycosyltransferase  Galactofuranose
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号