首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Subcellular compartmentation of different lipophilic fluorescein derivatives in maize root epidermal cells
Authors:David Brauer  Joe Uknalis  Ruth Triana  Shu -I Tu
Institution:(1) U.S. Department of Agricultures, Plant-Soil Biophysics Research Unit, Eastern Regional Research Center, ARS, 600 E. Mermaid Lane, 19118 Philadelphia, PA, USA
Abstract:Summary Fluorescence microscopy offers some distinct advantages over other techniques for studying ion transport processes in situ with plant cells. However, the use of this technology in plant cells has been limited by our lack of understanding the mechanisms that influence the subcellular distribution of dyes after loading with the lipophilic precursors. In this study, the subcellular distribution of 5-(and 6-)carboxydichlorofluorescein (CDCF), carboxy-SNAFL-1, and carboxy-SNARF-1 was compared to that of 2prime,7prime-bis-(2-carboxyethyl)-5-(and 6-)carboxyfluorescein (BCECF) after incubation of maize roots with their respective lipophilic precursors. Previously, we reported that incubation of roots with BCECF-acetomethyl ester (BCECF-AM) led to vacuolar accumulation of this dye. Similar results were found when roots were incubated with CDCF-diacetate. In contrast, carboxy-SNAFL-1 appeared to be confined to the cytoplasm based on the distribution of fluorescence and the excitation spectra of the dye in situ. On the other hand, incubation of roots with carboxy-SNARF-1-acetoxymethyl acetate yielded fluorescence throughout the cell. When the cytoplasm of epidermal cells was loaded with the BCECF acid by incubation at pH 4 in the absence of external Ca, the dye was retained in the cytoplasm at least 3 h after the loading period. This result indicated that vacuolar accumulation of BCECF during loading of BCECF-AM was not due to transport of BCECF from cytoplasm to vacuole. The esterase activities responsible for the production of either carboxy-SNAFL-1 or BCECF from their respective lipophilic precursor by extracts of roots were compared. The characterization of esterase activities was consistent with the subcellular distribution of these dyes in root cells. The results of these experiments suggest that in maize root epidermal cells the subcellular distribution of these fluorescein dyes may be determined by the characteristics of the esterase activities responsible for hydrolysis of the lipophilic precursor.Abbreviations BCECF (BCECF-AM) 2prime,7prime-bis-(2-carboxyethyl)-5-(and 6-)carboxyfluorescein (its acetoxymethyl ester) - BTB bis-trispropane - CDCF (CDCF-DA) 5-(and 6-)carboxy-2prime,7prime-dichlorofluorescein (its diacetate derivative) - DAPI 4prime,6-diamidino-2 phenylindole dihydrochloride - DMSO dimethylsulfoxide - HEPES N-2-hydroxyethyl] piperazine-Nprime-2-ethanesulfonic acid] - MES 2-N-morpholino]ethane-sulfonic acid - SNAFL-1 (SNAFL-1-DA) carboxyl SNAFL-1 (its diacetate) - SNARF-1 (SNARF-1-AM) carboxyl SNARF-1 (its acetoxymethyl acetate)
Keywords:Cytosolic  Esterase  Fluorescence microscopy  Intracellular compartmentation  Vacuole
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号