首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Resolution and characterization of multiple cytosolic phosphatases capable of hydrolyzing fructose-1,6-bisphosphate in spinach and soybean leaves
Authors:David M Pharr  Steven C Huber
Institution:Departments of Horticultural and Crop Science, U. S. Department of Agriculture, Agricultural Research Service, North Carolina State Univ., Raleigh, NC, 27650, USA.
Abstract:The apparent activity of cytoplasmic fructose bisphosphatase (EC 3.1.3.11) in crude extracts of spinach ( Spinacia oleracea L.) and soybean ( Glycine max L.] Merr.) leaves was only partially dependent on Mg2+. At least two major non-chloroplastic fructose bisphosphatases that differed in dependence on Mg2+ were chromatographically resolved from spinach leaves. The Mg2+-dependent enzyme had an apparent Michaelis constant of 4 μM for fructose-1,6-P2, was highly specific, and was strongly inhibited by fructose-2,6-P2. Enzyme activity was inhibited by physiological levels of fructose-6-P.
Both species also contained at least one major enzyme, the activity of which was independent of Mg2+. These enzymes had pH optima near neutrality, Michaelis constants of 25 to 30 μM for fructose-1,6-P2, and were inhibited by AMP. Although hexose monophosphates were not metabolized, the enzymes were not specific for fructose-1,6-P2: phosphate was released from phosphoenolpyruvate and ribulose-1, 5-P2, and with fructose-1,6-P2, as substrate, Pi release was about 1.5-fold greater than fructose-6-P production. It is concluded that only the Mg2+-dependent fructose bisphosphatase, previously characterized, functions in the photosynthetic sucrose formation pathway. Inhibition of the Mg2+-dependent enzyme by fructose-6-P may be involved in regulation of sucrose formation.
Keywords:Fruetose bisphosphatase  fructose-2  6-bisphosphate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号