首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Use of Tn5 Mutants To Assess the Role of the Dissimilatory Nitrite Reductase in the Competitive Abilities of Two Pseudomonas Strains in Soil
Authors:L Philippot  A Clays-Josserand  and R Lensi
Abstract:We examined the influence of soil aeration state and plant root presence on the comparative survival of wild-type bacteria and isogenic Tn5 (Nir(sup-)) mutants lacking the ability to synthesize nitrite reductase. Two denitrifying Pseudomonas strains with different nitrite reductase types were used. Enumeration of bacteria in sterile and nonsterile soils was based on differential antibiotic resistance. The validity of the bacterial models studied (i.e., equal growth of wild-type and mutant bacteria under aerobic conditions and significantly better growth of wild-type bacteria under denitrifying conditions) was verified in pure-culture studies. In sterile soil, both strains survived better under aerobic than under anaerobic conditions. The lower efficiency of denitrification than O(inf2) respiration in supporting bacterial growth explained this result, and the physical heterogeneity of soil did not strongly modify the results obtained in pure-culture studies. In nonsterile soil, one of the Pseudomonas strains survived better under anaerobic conditions while the other competed equally with the indigenous soil microflora under aerobic and anaerobic conditions. However, when the Nir(sup-)-to-total inoculant ratios (wild type plus Nir(sup-) mutant) were analyzed, it appeared that the presence of nitrite reductase conferred on both Pseudomonas strains a competitive advantage for anaerobic environment or rhizosphere colonization. This is the first attempt to demonstrate with isogenic nondenitrifying mutants that denitrification can contribute to the persistence and distribution of bacteria in fluctuating soil environments.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号