Abstract: | In a previous study, we characterized a high chlorophyll fluorescence lpa1 mutant of Arabidopsis thaliana, in which approximately 20% photosystem (PS) II protein is accumulated. In the present study, analysis of fluorescence decay kinetics and thermoluminescence profiles demonstrated that the electron transfer reaction on either the donor or acceptor side of PSII remained largely unaffected in the lpa1 mutant. In the mutant, maximal photochemical efficiency (Fv/Fm, where Fm is the maximum fluorescence yield and Fv is variable fluorescence) decreased with increasing light intensity and remained almost unchanged in wild-type plants under different light conditions. The Fv/Fm values also increased when mutant plants were transferred from standard growth light to low light conditions. Analysis of PSII protein accumulation further confirmed that the amount of PSII reaction center protein is correlated with changes in Fv/Fm in lpa1 plants. Thus, the assembled PSII in the mutant was functional and also showed increased photosensitivity compared with wild-type plants.(Author for correspondence. Tel: +86 (0)10 6283 6256; Fax: +86 (0)10 8259 9384; E-mail: zhanglixin@ibcas.ac.cn) |