首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Apical and basolateral EGF receptors regulate gastric mucosal paracellular permeability
Authors:Chen M C  Goliger J  Bunnett N  Soll A H
Institution:CURE: Digestive Diseases Research Center, West Los Angeles Veterans Affairs Medical Center, School of Medicine, University of California, Los Angeles 70073, California. mcychen@ucla.edu
Abstract:Previous studies found that monolayers formed from canine oxyntic epithelial cells in primary culture displayed remarkable resistance to apical acidification and both mitogenic and migratory responses to epidermal growth factor (EGF) treatment. In our present studies, we found that EGF increased transepithelial resistance (TER) but not short-circuit current in these monolayers. Parallel effects of EGF on decreasing mannitol flux and increasing TER implicate direct regulation of paracellular permeability. EGF acting at either apical and basolateral receptors rapidly increased TER, but the apical response was sustained whereas the basolateral response was transient. (125)I-labeled EGF binding revealed specific apical binding, but receptor numbers were 25-fold lower than on the basolateral surface. Both apical and basolateral EGF activated tyrosine phosphorylation of EGF receptors (EGFR), beta-catenin, and cellular substrate as evident on confocal microscopy. Although apical EGF activated a lesser degree of receptor autophosphorylation than basolateral EGF, phosphorylation of beta-catenin was equally prominent with apical and basolateral receptor activation. Together, these findings indicate that functional apical and basolateral EGFR exist on primary canine gastric epithelial cells and that these receptors regulate paracellular permeability. The sustained effect of apical EGFR activation and prominent phosphorylation of beta-catenin suggest that apical EGFR may play a key role in this regulation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号