首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Investigation of transport-associated phosphorylation of sugar in yeast mutants (snf3) lacking high-affinity glucose transport and in a mutant (fdp1) showing deficient regulation of initial sugar metabolism
Authors:Monique Beullens  Dr Johan M Thevelein
Institution:(1) Laboratorium voor Cellulaire Biochemie, Katholieke Universiteit te Leuven, Kardinaal Mercierlaan 92, B-3030 Leuven-Heverlee, Flanders, Belgium
Abstract:Pool-labeling experiments with 2-deoxyglucose in derepressed cells of the yeastSaccharomyces cerevisiae confirmed the previously reported results pointing to the possible existence of transport-associated phosphorylation of sugar. In yeast mutants containing a disruption or an inactivating point mutation in thesnf3 gene, which codes for the high-affinity glucose carrier, no evidence for transport-associated phosphorylation of 2-deoxyglucose was observed. If transport-associated phosphorylation in yeast exists, it is apparently not mediated by the low-affinity glucose carrier. Mediation by the high-affinity carrier would fit with the known requirement of an active kinase for high-affinity sugar transport. A mixed type of uptake in cells having both carriers would explain many of the problems associated with the 2-deoxyglucose pool-labeling experiments. Since mutants that have only low-affinity glucose transport are not deficient in the glucose-induced RAS-mediated cAMP signal, transport-associated phosphorylation of glucose is not required for or involved in the induction of the signal. The yeastfdp mutant, which dies on media containing fermentable sugars because of overaccumulation of sugar phosphates, also did not show any evidence for the existence of transport-associated phosphorylation. The same was true for the double mutantfdp snf3. The latter also showed the typicalfdp phenotype, indicative that the lethality on media containing fermentable sugar is owing to aberrant regulation of low-affinity transport. The high protein kinase activity in thefdp mutant does not appear to be responsible for the absence of evidence for transport-associated phosphorylation, because another mutant with high protein kinase activity, thebcy mutant, displayed normal transport behavior.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号