首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of lectin receptors for conserved SARS‐CoV‐2 glycosylation sites
Authors:David Hoffmann,Stefan Mereiter,Yoo Jin Oh,Vanessa Monteil,Elizabeth Elder,Rong Zhu,Daniel Canena,Lisa Hain,Elisabeth Laurent,Clemens Grü  nwald‐  Gruber,Miriam Klausberger,Gustav Jonsson,Max J Kellner,Maria Novatchkova,Melita Ticevic,Antoine Chabloz,Gerald Wirnsberger,Astrid Hagelkruys,Friedrich Altmann,Lukas Mach,Johannes Stadlmann,Chris Oostenbrink,Ali Mirazimi,Peter Hinterdorfer,Josef M Penninger
Abstract:
New SARS‐CoV‐2 variants are continuously emerging with critical implications for therapies or vaccinations. The 22 N‐glycan sites of Spike remain highly conserved among SARS‐CoV‐2 variants, opening an avenue for robust therapeutic intervention. Here we used a comprehensive library of mammalian carbohydrate‐binding proteins (lectins) to probe critical sugar residues on the full‐length trimeric Spike and the receptor binding domain (RBD) of SARS‐CoV‐2. Two lectins, Clec4g and CD209c, were identified to strongly bind to Spike. Clec4g and CD209c binding to Spike was dissected and visualized in real time and at single‐molecule resolution using atomic force microscopy. 3D modelling showed that both lectins can bind to a glycan within the RBD‐ACE2 interface and thus interferes with Spike binding to cell surfaces. Importantly, Clec4g and CD209c significantly reduced SARS‐CoV‐2 infections. These data report the first extensive map and 3D structural modelling of lectin‐Spike interactions and uncovers candidate receptors involved in Spike binding and SARS‐CoV‐2 infections. The capacity of CLEC4G and mCD209c lectins to block SARS‐CoV‐2 viral entry holds promise for pan‐variant therapeutic interventions.
Keywords:glycosylation, lectin, SARS‐  CoV‐  2, spike
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号