首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of a donor mitochondrial DNA transmission bottleneck in nuclear transfer derived cow lineages
Authors:Takeda Kumiko  Kaneyama Kanako  Tasai Mariko  Akagi Satoshi  Takahashi Seiya  Yonai Miharu  Kojima Toshiyuki  Onishi Akira  Tagami Takahiro  Nirasawa Keijiro  Hanada Hirofumi
Institution:National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan. kumiko@affrc.go.jp
Abstract:In embryos derived by nuclear-transfer (NT), fusion of donor cells with recipient oocytes resulted in varying patterns of mitochondrial DNA (mtDNA) transmission in NT animals. Distribution of donor cell mtDNA (D-mtDNA) found in offspring of NT-derived founders may also vary from donor cell and host embryo heteroplasmy to host embryo homoplasmy. Here we examined the transmission of mtDNA from NT cows to G(1) offspring. Eleven NT founder cows were produced by fusion of enucleated oocytes (Holstein/Japanese Black) with Jersey/ Holstein oviduct epithelial cells, or Holstein/Japanese Black cumulus cells. Transmission of mtDNA was analyzed by PCR mediated single-strand conformation polymorphism of the D-loop region. In six of seven animals sampled postmortem, heteroplasmy were detected in various tissues, while D-mtDNA could not be detected in blood or hair samples from four live animals. The average proportion of D-mtDNA detected in one NT cow was 7.6%, and those in other cows were <5%. Heteroplasmic NT cows (n = 6) generated a total 12 G(1) offspring. Four of 12 G(1) offspring exhibited high percentages of D-mtDNA populations (range 17-51%). The remaining eight G(1) offspring had slightly or undetectable D-mtDNA (<5%). Generally, a genetic bottleneck in the female germ-line should favor a homoplasmic state. However, proportions of some G(1) offspring maintained heteroplasmy with a much higher percentage of D-mtDNA than their NT dams, which may also reflect a segregation distortion caused by the proposed mitochondrial bottleneck. These results demonstrate that D-mtDNA in NT cows is transmitted to G(1) offspring with varying efficiencies.
Keywords:mitochondrial DNA  nuclear transfer  heteroplasmy  transmission  cattle
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号