首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lipopolysaccharide changes the subcellular distribution of aquaporin 5 and increases plasma membrane water permeability in mouse lung epithelial cells
Authors:Ohinata Akira  Nagai Kazufumi  Nomura Johji  Hashimoto Kodai  Hisatsune Akinori  Miyata Takeshi  Isohama Yoichiro
Institution:Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan.
Abstract:Aquaporin-5 (AQP5), a major water channel in lung epithelial cells, plays an important role in maintaining water homeostasis in the lungs. Cell surface expression of AQP5 is regulated by not only mRNA and protein synthesis but also changes in subcellular distribution. We investigated the effect of lipopolysaccharide (LPS) on the subcellular distribution of AQP5 in a mouse lung epithelial cell line (MLE-12). LPS caused significant increases in AQP5 in the plasma membrane at 0.5-2 h. Immunofluorescence and Western blotting strongly suggested that LPS altered AQP5 subcellular distribution from an intracellular vesicular compartment to the plasma membrane. The specific p38 MAP kinase inhibitor SB 203580 apparently prevented LPS-induced changes in AQP5 distribution. Furthermore, LPS increased the osmotic water permeability of MLE-12 cells. These findings demonstrate that LPS increases cell surface AQP5 expression by changing its subcellular distribution and increases membrane osmotic water permeability through activation of p38 MAP kinase.
Keywords:Aquaporin 5  Lipopolysaccharide  Subcellular distribution  Lung epithelial cell  Membrane water permeability
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号