Immunocompetence and high metabolic rates enhance overwinter survival in the root vole,Microtus oeconomus |
| |
Authors: | Aneta Ksi??ek Karol Zub Paulina A. Szafrańska Monika Wieczorek Marek Konarzewski |
| |
Affiliation: | 1Institute of Biology, University of Białystok, Świerkowa 20B, 15-950 Białystok, Poland;2Mammal Research Institute, Polish Academy of Sciences, Waszkiewicza 1, 17-230 Białowieża, Poland |
| |
Abstract: | Despite its presumed significance, the association between immune defence, energy expenditures and overwinter survival is rarely studied. We analysed individual variation in immunocompetence quantified as neutrophil-to-lymphocyte ratio (N/L), total white blood cells (WBC) and natural antibody levels, along with resting (RMR) and peak metabolic rates (PMR) and mortality during three consecutive winter seasons in a natural population of the root vole, Microtus oeconomus. In early winter, WBC count was negatively correlated with RMR, whereas N/L ratio was negatively correlated with swim-elicited PMR. We suggest that while the first correlation reflected the trade-off between energy allocation in immunocompetence and other metabolically demanding processes, the latter correlation stemmed from stress-induced immunosuppression elicited by the necessity to cope with swimming in frequently flooded habitat. In addition, the analysis carried out during the first year of study characterized by a high population density and prevalence of infestation with a blood parasite—Babesia spp., showed that its intensity was inversely correlated with the N/L ratio. In summary, our results suggest that elevated N/L ratio increases the winter survival of free-ranging rodents by increasing their ability to cope with parasitic infections. |
| |
Keywords: | N/L ratio innate immunity metabolic rates overwinter survival trade-off white blood cell count |
|
|