首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of secondary metabolites as defense chemicals against ice-ice disease bacteria in biofouler at carrageenophyte farms
Authors:Charles S Vairappan  Sangeetha P Anangdan  Kai Lee Tan  Shigeki Matsunaga
Institution:(1) Laboratory of Natural Products Chemistry, Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah, Malaysia;(2) Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
Abstract:Carrageenophyte farming is an expanding economical activity in North Borneo Island, Malaysia. During routine monitoring of “ice-ice” disease and epiphyte outbreak at commercial farms, it was apparent that culture lines were heavily (60–80%) infested with biofoulers, particularly Acanthophora spp. and Laurencia majuscula. However, only L. majuscula showed dominance and flourished even during “ice-ice” disease outbreak. Presence of chemical defense against seaweed pathogens was investigated in two populations of L. majuscula collected from three major carrageenophyte farms in two districts; (A) Lohok Butun, Selakan Island, and Bum-Bum Island, in Semporna district, and (B) Telutuh, Carrington Reef, and Balambangan Island, in Kudat district. The first population contained elatol (1), and iso-obtusol (2), and, second population contained (Z)-10,15-dibromo-9-hydroxy-chamigra-1,3(15),7(14)-triene (3) and (E)-10-15-dibromo-9-hydroxy-chamigra-1,3(15),7(14)-triene (4), as their antibacterial metabolites. All four metabolites showed highly selective inhibition against “ice-ice” disease bacteria compared to human pathogens at 30 μg disk−1. In addition, seasonal variation of these compounds at two representative farms (Selakan Island P-1] and Balambangan Island P-2]) revealed a 120–170% increase in concentration during “ice-ice” disease outbreak. Microscopy of fresh specimens showed the presence of corps en cerise, which is the synthesis and storage site of halogenated metabolites at superficial cortical cells, branch tips, and trichoblasts. This suggests the importance of these metabolites as defense chemicals against “ice-ice” disease bacteria in L. majuscula that grows on seaweed culture lines.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号