首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fire Interval Effects on Successional Trajectory in Boreal Forests of Northwest Canada
Authors:J F Johnstone  F S Chapin III
Institution:(1) Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA;(2) Present address: Department of Geography and Environmental Studies, Carleton University, Ottawa, ON, K1S 5B6, Canada
Abstract:Although succession may follow multiple pathways in a given environment, the causes of such variation are often elusive. This paper describes how changes in fire interval mediate successional trajectory in conifer-dominated boreal forests of northwestern Canada. Tree densities were measured 5 and 19 years after fire in permanent plots and related to pre-fire vegetation, site and fire characteristics. In stands that were greater than 75 years of age when they burned, recruitment density of conifers was significantly correlated with pre-fire species basal area, supporting the expectation of stand self-replacement as the most common successional pathway in these forests. In contrast, stands that were under 25 years of age at the time of burning had significantly reduced conifer recruitment, but showed no change in recruitment of trembling aspen (Populus tremuloides). As a result, young-burned stands had a much higher probability of regenerating to deciduous dominance than mature-burned stands, despite the dominance of both groups by spruce (Picea mariana and Picea glauca) and pine (Pinus contorta) before the fire. Once initiated, deciduous-dominated stands may be maintained across subsequent fire cycles through mechanisms such as low on-site availability of conifer seed, competition with the aspen canopy, and rapid asexual regeneration of aspen after fire. We suggest that climate-related increases in fire frequency could trigger more frequent shifts from conifer to deciduous-dominated successional trajectories in the future, with consequent effects on multiple ecosystem processes.
Keywords:alternative community states  disturbance effects  fire return interval  Pinus contorta  Picea mariana  Populus tremuloides  postfire regeneration  successional trajectory
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号