首页 | 本学科首页   官方微博 | 高级检索  
     


Bowman-Birk proteinase inhibitor-mediated radioprotection against UV irradiation is TP53-dependent and associated with stimulation of nucleotide excision repair
Authors:Dittmann K  Knaus-Dittmann D  Mayer C  Rodemann H P
Affiliation:Department of Radiotherapy, Eberhard-Karls-University, Tübingen, Germany.
Abstract:The Bowman-Birk proteinase inhibitor (BBI) has previously been described as a radioprotective agent against ionising radiation. It was demonstrated that BBI is able to significantly increase the clonogenic cell survival of normal fibroblasts when applied before exposure to ultraviolet B (UVB) radiation. In transformed TP53-mutated cell lines, however, the BBI-mediated radioprotection was absent. At the molecular level, the radioprotective effect of BBI can be correlated with BBI-mediated stabilisation of TP53 protein prior to irradiation. Following UVB irradiation, the BBI-treated cells present an accelerated removal of cyclobutane pyrimidine dimers. Thus, the cell and molecular biological data presented suggest that BBI is able to protect cells with functional TP53 from UVB-induced DNA damage. This protective effect is most likely achieved via the activation of the TP53 signalling cascade resulting in the activation of nucleotide excision repair. Received: 7 August 2000 / Accepted: 11 January 2001
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号