Stimulation of Na,K-ATPase by low potassium requires reactive oxygen species |
| |
Authors: | Zhou Xiaoming Yin Wu Doi Sonia Q Robinson Shawn W Takeyasu Kunio Fan Xuetao |
| |
Affiliation: | Department of Medicine, Uniformed Services University, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA. xiazhou@usuhs.mil |
| |
Abstract: | The signaling pathway that transduces the stimulatory effect of low K+ on the biosynthesis of Na,K-ATPase remains largely unknown. The present study was undertaken to examine whether reactive oxygen species (ROS) mediated the effect of low K+ in Madin-Darby canine kidney (MDCK) cells. Low K+ increased ROS activity in a time- and dose-dependent manner, and this effect was abrogated by catalase and N-acetylcysteine (NAC). To determine the role of ROS in low-K+-induced gene expression, the cells were first stably transfected with expression constructs in which the reporter gene chloramphenicol acetyl transferase (CAT) was under the control of the avian Na,K-ATPase -subunit 1.9 kb and 900-bp 5'-flanking regions that have a negative regulatory element. Low K+ increased the CAT expression in both constructs. Catalase or NAC inhibited the effect of low K+. To determine whether the increased CAT activity was mediated through releasing the repressive effect or a direct stimulation of the promoter, the cells were transfected with a CAT expression construct directed by a 96-bp promoter fragment that has no negative regulatory element. Low K+ also augmented the CAT activity expressed by this construct. More importantly, both catalase and NAC abolished the effect of low K+. Moreover, catalase and NAC also inhibited low-K+-induced increases in the Na,K-ATPase 1- and 1-subunit protein abundance and ouabain binding sites. The antioxidants had no significant effect on the basal levels of CAT activity, protein abundance, or ouabain binding sites. In conclusion, low K+ enhances the Na,K-ATPase gene expression by a direct stimulation of the promoter activity, and ROS mediate this stimulation and also low-K+-induced increases in the Na,K-ATPase protein contents and cell surface molecules. Madin-Darby canine kidney cells; N-acetylcysteine; catalase |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
| 点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息 |
|
点击此处可从《American journal of physiology. Cell physiology》下载全文 |
|