首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genome-Wide Analysis of DNA Methylation before-and after Exercise in the Thoroughbred Horse with MeDIP-Seq
Authors:Jeong-An Gim  Chang Pyo Hong  Dae-Soo Kim  Jae-Woo Moon  Yuri Choi  Jungwoo Eo  Yun-Jeong Kwon  Ja-Rang Lee  Yi-Deun Jung  Jin-Han Bae  Bong-Hwan Choi  Junsu Ko  Sanghoon Song  Kung Ahn  Hong-Seok Ha  Young Mok Yang  Hak-Kyo Lee  Kyung-Do Park  Kyoung-Tag Do  Kyudong Han  Joo Mi Yi  Hee-Jae Cha  Selvam Ayarpadikannan  Byung-Wook Cho  Jong Bhak  Heui-Soo Kim
Abstract:Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits.
Keywords:DNA methylation  exercise  MeDIP-Seq  thoroughbred horse  transposable elements
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号