首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Novel oxysterols observed in tissues and fluids of AY9944-treated rats: a model for Smith-Lemli-Opitz syndrome
Authors:Xu Libin  Liu Wei  Sheflin Lowell G  Fliesler Steven J  Porter Ned A
Institution:Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.
Abstract:Treatment of Sprague-Dawley rats with AY9944, an inhibitor of 3β-hydroxysterol-Δ(7)-reductase (Dhcr7), leads to elevated levels of 7-dehydrocholesterol (7-DHC) and reduced levels of cholesterol in all biological tissues, mimicking the key biochemical hallmark of Smith-Lemli-Opitz syndrome (SLOS). Fourteen 7-DHC-derived oxysterols previously have been identified as products of free radical oxidation in vitro; one of these oxysterols, 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), was recently identified in Dhcr7-deficient cells and in brain tissues of Dhcr7-null mouse. We report here the isolation and characterization of three novel 7-DHC-derived oxysterols (4α- and 4β-hydroxy-7-DHC and 24-hydroxy-7-DHC) in addition to DHCEO and 7-ketocholesterol (7-kChol) from the brain tissues of AY9944-treated rats. The identities of these five oxysterols were elucidated by HPLC-ultraviolet (UV), HPLC-MS, and 1D- and 2D-NMR. Quantification of 4α- and 4β-hydroxy-7-DHC, DHCEO, and 7-kChol in rat brain, liver, and serum were carried out by HPLC-MS using d(7)-DHCEO as an internal standard. With the exception of 7-kChol, these oxysterols were present only in tissues of AY9944-treated, but not control rats, and 7-kChol levels were markedly (>10-fold) higher in treated versus control rats. These findings are discussed in the context of the potential involvement of 7-DHC-derived oxysterols in the pathogenesis of SLOS.
Keywords:cholesterol  cholesterol/biosynthesis  lipids/peroxidation  7-dehydrocholesterol
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号