首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanism of photosynthetic water oxidation in the dimeric oxygen-evolving complex of chloroplast photosystem II
Authors:Shutilova N I
Institution:Institute of Basic Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
Abstract:Based on the analysis of the molecular organization and properties of an isolated oxygen-evolving complex of photosystem II of plant chloroplasts, a mechanism of water oxidation and oxygen release during photosynthesis was proposed. It is suggested that the photolysis of water occurs in a dimeric oxygen-evolving complex consisting of two core complexes. In the region of contact of these complexes, a hydrophobic "boiler" is formed where the conditions for screening and stabilization of Z-linanded manganese cations accumulating positive charges for the oxidation of water molecules are created. A prerequisite to the photolysis of water is the formation of a binuclear Mn(3+)-OH ... HO-Mn3+] hydroxyl-manganese associate, which appears in the dimeric oxygen-evolving complex after the first two light flashes as a result of photohydrolysis of photochemically oxidized Z-liganded manganese cations. The process is accompanied by the release of the first water protons to the medium. The photosynthetic oxidation of water hydroxyls occurs at the next stage and is considered as synchronous detachment of four electrons from two bound OH-groups of the associate upon photooxidation of Mn3+ cations to Mn4+ cations after two subsequent light flashes. This process is accompanied by the disproportionation of electron density and the formation of a bond between oxygen atoms of hydroxyls followed by the evolution of molecular oxygen and protons, and regeneration of two starting Mn2+ cations and the primary state of the system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号