Spatiotemporal Patterns of SSeCKS Expression After Rat Spinal Cord Injury |
| |
Authors: | Feng Xiao Min Fei Chun Cheng Yuhong Ji Linlin Sun Jing Qin Junling Yang Yonghua Liu Li Zhang Yinyin Xia Aiguo Shen |
| |
Affiliation: | The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China. |
| |
Abstract: | ![]() Src suppressed C kinase substrate (SSeCKS) was identified as a PKC substrate/PKC-binding protein, which plays a role in mitogenic regulatory activity and has a function in the control of cell signaling and cytoskeletal arrangement. However its distribution and function in the central nervous system (CNS) lesion remain unclear. In this study, we mainly investigated the mRNA and protein expression and cellular localization of SSeCKS during spinal cord injury (SCI). Real-time PCR and Western blot analysis revealed that SSeCKS was present in normal whole spinal cord. It gradually increased, reached a peak at 3 days for its mRNA level and 5 days for its protein level after SCI, and then declined during the following days. In ventral horn, the expression of SSeCKS underwent a temporal pattern that was similar with the whole spinal cord in both mRNA and protein level. However, in dorsal horn, the mRNA and protein for SSeCKS expression were significantly increased at 1 day for its mRNA level and 3 days for its protein level, and then gradually declined to the baseline level, ultimately up-regulated again from 7 to 14 days. The protein expression of SSeCKS was further analysed by immunohistochemistry. The positively stained areas for SSeCKS changed with the similar pattern to that of protein expression detected by immunoblotting analysis. Double immunofluorescence staining showed that SSeCKS immunoreactivity (IR) was found in neurons, astrocytes, oligodendrocytes of spinal cord tissues within 5 mm from the lesion site. Importantly, injury-induced expression of SSeCKS was co-labeled by active caspase-3 (apoptotic marker), Tau-1 (the marker for pathological oligodendrocyte) and β-1,4-galactosyltransferase 1 (GalT). All the results suggested that SSeCKS might play important roles in spinal cord pathophysiology and further research is needed to have a good understanding of its function and mechanism. Feng Xiao and Min Fei contributed equally to this work. |
| |
Keywords: | SSeCKS Spinal cord injury Rat |
本文献已被 PubMed SpringerLink 等数据库收录! |
|