首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Serial optimization of biomass production using microalga Nannochloris oculata and corresponding lipid biosynthesis
Authors:Sang-Jin Park  Yoon-E Choi  Eun Jung Kim  Won-Kun Park  Chul Woong Kim  Ji-Won Yang
Institution:Department of Chemical and Biomolecular Engineering, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
Abstract:As energy and environment have become urgent issues, there has been increasing needs to develop alternative energy source, such as microalgal bio-fuel. In this study, we investigated the growth and lipid contents of microalgae Nannochloris oculata under various environmental conditions for biodiesel production. Our results indicated that biomass productivities of N. oculata were correlated with increasing nitrogen concentrations up to 37.5 ppm. High irradiance using 230-250 μmol/m(2) led to higher biomass yields than low irradiance of 160-180 μmol/m(2). Biomass productivities increased further by manipulating surface to volume ratio (S/V), which in turn enhanced light penetration. Finally, optimal biomass productivities (1.04 g/l day) could be achieved by the supplementation of yeast extract. Lipid contents and fatty acid profiles of N. oculata were affected by the different growth conditions. Lipid contents of N. oculata decreased as nitrogen concentration increased. Lower temperature (15 °C) resulted in higher lipid content than higher temperature (25 °C). Fatty acid profiles of N. oculata indicated that palmitic acid (C16:0) and linoleic acid (C18:2) were the two most abundant fatty acids, but the supplementation of yeast extract increased linolenic acid (C18:3) content. Our results suggested the feasibility of N. oculata for the biodiesel production.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号